Time-resolved diffraction profiles and atomic dynamics in short-pulse laser-induced structural transformations: Molecular dynamics study

نویسنده

  • Zhibin Lin
چکیده

The diffraction profiles and density correlation functions are calculated for transient atomic configurations generated in molecular dynamics simulations of a 20 nm Au film irradiated with 200 fs laser pulses of different intensity. The results of the calculations provide an opportunity to directly relate the detailed information on the atomic-level structural rearrangements available from the simulations to the diffraction spectra measured in time-resolved x-ray and electron diffraction experiments. Three processes are found to be responsible for the evolution of the diffraction profiles. During the first several picoseconds after the laser excitation, the decrease of the intensity of the diffraction peaks is largely due to the increasing amplitude of thermal atomic vibrations and can be well described by the Debye-Waller factor. The effect of thermoelastic deformation of the film prior to melting is reflected in shifts and splittings of the diffraction peaks, providing an opportunity for experimental probing of the ultrafast deformations. Finally, the onset of the melting process results in complete disappearance of the crystalline diffraction peaks. The homogeneous nucleation of a large number of liquid regions throughout the film is found to be more effective in reducing long-range correlations in atomic positions and diminishing the diffraction peaks as compared to the heterogeneous melting by melting front propagation. For the same fraction of atoms retaining the local crystalline environment, the diffraction peaks are more pronounced in heterogeneous melting. A detailed analysis of the real space correlations in atomic positions is also performed and the atomic-level picture behind the experimentally observed fast disappearance of the correlation peak corresponding to the second nearest neighbors in the fcc lattice during the laser heating and melting processes is revealed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-resolved diffraction profiles and structural dynamics of Ni film under short laser pulse irradiation

The evolution of the diffraction profiles during the fast thermoelastic deformation and structural transformations induced in a thin Ni film by short pulse laser irradiation is investigated in molecular dynamics simulations. Fast disappearance of the diffraction peaks characteristic for the initial crystal structure is related to the homogeneous nucleation and growth of liquid regions inside th...

متن کامل

Showtime for Molecular Movies

T he scientist Ahmed Zewail (1946–2016) was awarded the Nobel Prize in Chemistry in 1999 for his contributions to femtochemistry, the field that studies chemical changes on the time scales on which atoms move—femtoseconds (fs). Femtochemistry experiments follow the electronic or structural dynamics of a molecule by first exciting it with a femtosecond “pump” laser pulse, and then observing it u...

متن کامل

Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator

Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wa...

متن کامل

Femtosecond Photocathode Electron Gun for Time- Resolved Electron Diffraction

Ultrafast time-resolved electron diffraction based on a photocathode rf electron gun is being developed in Osaka University to reveal the hidden dynamics of intricate molecular and atomic processes in materials. The photocathode rf gun generates a femtosecond-bunch electron beam by femtosecond laser driving. The transverse emittance, bunch length and energy spread were measured. The growths of ...

متن کامل

Ultrafast structural changes measured by time-resolved X-ray diffraction

High-intensity X-ray pulses from third-generation synchrotron sources make it possible to study the temporal dynamics of rapidly evolving materials. We report a study of rapid and reversible disordering of the structure of an InSb crystal induced by an ultrashort laser pulse. A novel crosscorrelation detection technique is described, which allowed us to observe rapid changes in X-ray diffractio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006